Constrained Sparse Functional Connectivity Networks for MCI Classification
نویسندگان
چکیده
Mild cognitive impairment (MCI) is difficult to diagnose due to its subtlety. Recent emergence of advanced network analysis techniques utilizing resting-state functional Magnetic Resonance Imaging (rs-fMRI) has made the understanding of neurological disorders more comprehensively at a whole-brain connectivity level. However, inferring effective brain connectivity from fMRI data is a challenging task, particularly when the ultimate goal is to obtain good control-patient classification performance. Incorporating sparsity into connectivity modeling can potentially produce results that are biologically more meaningful since most biologically networks are formed by a relatively few number of connections. However, this constraint, when applied at an individual level, will degrade classification performance due to inter-subject variability. To address this problem, we consider a constrained sparse linear regression model associated with the least absolute shrinkage and selection operator (LASSO). Specifically, we introduced sparsity into brain connectivity via l1-norm penalization, and ensured consistent non-zero connections across subjects via l2-norm penalization. Our results demonstrate that the constrained sparse network gives better classification performance than the conventional correlation-based network, indicating its greater sensitivity to early stage brain pathologies.
منابع مشابه
Subject-specific functional parcellation via Prior Based Eigenanatomy
We present a new framework for prior-constrained sparse decomposition of matrices derived from the neuroimaging data and apply this method to functional network analysis of a clinically relevant population. Matrix decomposition methods are powerful dimensionality reduction tools that have found widespread use in neuroimaging. However, the unconstrained nature of these totally data-driven techni...
متن کاملTopological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification.
Recently, brain connectivity networks have been used for classification of Alzheimer's disease and mild cognitive impairment (MCI) from normal controls (NC). In typical connectivity-networks-based classification approaches, local measures of connectivity networks are first extracted from each region-of-interest as network features, which are then concatenated into a vector for subsequent featur...
متن کاملBrain Connectivity Hyper-Network for MCI Classification
Brain connectivity network has been used for diagnosis and classification of neurodegenerative diseases, such as Alzheimer's disease (AD) as well as its early stage, i.e., mild cognitive impairment (MCI). However, conventional connectivity network is usually constructed based on the pairwise correlation among brain regions and thus ignores the higher-order relationship among them. Such informat...
متن کاملLearning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation
Rapid advances in neuroimaging techniques provide great potentials for study of Alzheimer's disease (AD). Existing findings have shown that AD is closely related to alteration in the functional brain network, i.e., the functional connectivity between different brain regions. In this paper, we propose a method based on sparse inverse covariance estimation (SICE) to identify functional brain conn...
متن کاملComputer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity
Background: Tinnitus known as a central nervous system disorder is correlated with specific oscillatory activities within auditory and non-auditory brain areas. Several studies in the past few years have revealed that in the most tinnitus cases, the response pattern of neurons in auditory system is changed due to auditory deafferentation, which leads to variation and disruption of the brain net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 15 Pt 2 شماره
صفحات -
تاریخ انتشار 2012